

Electronics and Electrical Communications Engineering Department

Tanta University

Faculty of Engineering

Course Title	أ (تقاير فنية)	Academic Year 2021/2022First-	Course Code	EEC21H3
Year/ Level	Second year/ Level 2	Semester Exam		
Date	2/2/2022	No. of Pages (2)	Allowed time	2 hrs
Maximum M	ark: 40	Remarks: Please answ	ver all the followin	g questions

Question Number (1)

(10 Marks)

a) Write 'True' or 'False' with correcting the false statements:

(5 Marks)

- 1. The informal reports do not include content page.
- 2. The tree diagram is used to assess the reason for writing.
- 3. In the formal report, the front section includes the summary, introduction, and conclusion.
- 4. The appendix exists at the end of the research article before the conclusions.
- 5. The used citations in the abstract are not inserted in the references list.
- 6. The conclusions are the inferences made from the findings.
- 7. The letter of transmittal is a covering letter.
- 8. The table of contents lists the sections of the report in a column form using the sections numbering used in the body of the report.
- 9. Using the American Psychological Association style, the last author's last name and the date of publication are used in the citation.
- 10. We must put the abbreviations between parentheses each time they appeared.
- b) Give an example for <u>tree diagram</u> and its corresponding <u>point-form outline</u> for a proposed literature review topic. (5 Marks)

Question Number (2)

(10 Marks)

a) Re-write the following structures by removing the redundant/excess words:

(5 Marks)

- 1- are made arranged for
- 2- performed the development of
- 3- period of time
- 4- had done previously
- 5- mix together
- b) Define the word 'Appendix'. Then, for an original research article titled 'Embedded systems in industrial applications', which is authored by Mohamed Salah, and Ahmed Hassanien, and published in an international journal named Signal and Information Processing. This article is published in volume 6 and issue number 3 in 25 pages from page 244 in the year 2020. Use the <u>APA</u> and the <u>MLA formats</u> to list this paper in the references list. (5 Marks)

Electronics and Electrical Communications Engineering Department

Tanta University

Faculty of Engineering

Question Number (3)

(10 Marks)

- a) In technical report writing and presentations, state the elements of good technical communication. (5 Marks)
- b) Mention the general guidelines for writing the captions of the figures and tables in the technical writing.

 (5 Marks)

Question Number (4)

(10 Marks)

a) Re-airrange the following unordered abstract based on the structure rules of the abstract, then; suggest a title based on the arranged abstract, and mention the restrictions during writing an abstract?

(5 Marks)

Unordered abstract:

A comparative analysis of all the wearable technology in healthcare is discussed in this review article with tabulation of various research and technology. The next step in healthcare is to integrate it with IoT-assisted wearable sensor systems seamlessly. This review rigorously discusses the various IoT architectures, different methods of data processing, transfer, and computing paradigms. Internet of Things (IoT) has played an essential role in many industries over the last few decades. Recent advancements in the healthcare industry have made it possible to make healthcare accessible to more people and improve their overall health. This review also analyses all the problems commonly faced in IoT-assisted wearable sensor systems and the specific issues that need to be tackled to optimize these systems in healthcare and describes the various future implementations that can be made to the architecture and the technology to improve the healthcare industry. It compiles various communication technologies and the devices commonly used in IoT-assisted wearable sensor systems and deals with its various applications in healthcare and their advantages to the world.

b) Rewrite the following statements in a formal way:

(5 Marks)

- A. I found that the fittings were defective.
- B. In my view, the market value will rise in the spring.
- C. The product is not of a satisfactory nature.

End of questions with best wishes

Course Coordinator

Examination Committee

Assistant Prof. Amira Salah Ashour

Assistant Prof. Amira Salah Ashour Assistant Dr. Mahmoud Seliem Dr. Hussein Eltybee Dr. Nancy Elshaer

Department: Physics and Engineering Mathematics Total Marks: 85 Marks

Faculty of Engineering

Course Title: Engineering Mathematics 3(a)

Course Code: PME2109, : PME2110

Year: 2nd

Date: 30/1/2022 (First term)

Allowed time: 3 hrs

No. of Pages: (2)

Remarks: (answer the following problems... assume any missing data... answers should be supported by sketches)

Problem number (1) (40 Marks)

- a) Use the values given by $f(x) = x^3 + 2$ at x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 to find $S_i(x)$ and approximation of f(x) at x = 0.1, 0.3 using the Natural Cubic Spline Interpolation.
- Prove that $f''(x) = \frac{f(x+h) 2f(x) + f(x-h)}{h^2}$ and $T.E \le \frac{h^2}{12} |f^{(4)}(c)|, \quad x-h \le c \le x+h$
- Use Gaussian quadrature (1- midpoint, 2- points, and 3- points) formula to evaluate the integral $I = \int_0^1 \frac{dx}{1+x^2}$ then determine the absolute error.
- Solve the initial value problem (IVP) by using Euler method $\frac{dy}{dx} = (2x y), x_o = 0, y_o = -1$. To get the value of (y) at (x=0.5) with (h=0.1) compare the values of the exact solution $y(x) = e^{-x} + 2x 2$.

Problem number (2) (45 Marks)

- a) Use the Adams third order Predictor Corrector Method to obtain an approximation to the Solution of the initial value problem (IVP) $\frac{dy}{dx} = (2x y), x_o = 0, y_o = -1$ with (h=0.1) to approximate (y) at (x=0.4)
- b) Take the case of a pressure vessel that is being tested in the laboratory to check its ability to withstand pressure. For a thick pressure vessel of inner radius a and outer radius b, the differential equation for the radial displacement u of a point along the thickness is given by

$$\frac{d^2u}{dr^2} + \frac{1}{r}\frac{du}{dr} - \frac{u}{r^2} = 0$$

The inner radius a = 5'' and the outer radius b = 8''. The boundary conditions are:

$$u\Big|_{r=a} = 0.0038731$$
"

$$u\Big|_{r=b} = 0.0030769$$
"

Divide the radial thickness of the pressure vessel into 6 equidistant nodes. Solve by using finite difference method. Take $\frac{du}{dr} \approx \frac{u_{i+1} - u_i}{\Delta r}$

Find the numerical solution of wave equation $\alpha^2 u_{xx}(x,t) = u_{tt}(x,t)$, 0 < x < l, 0 < t < TUsing implicit method.

Where at j = 0

$$2u_{i}^{1} - \lambda^{2}(u_{i+1}^{1} - 2u_{i}^{1} + u_{i-1}^{1}) = 2f_{i} + 2k g_{i} - k \lambda^{2}(g_{i+1} + 2g_{i} + g_{i-1})$$

d) Approximate the solution of the wave equation $u_{xx} = u_n$, 0 < x < 1, t > 0 subjected to the initial and boundary conditions:

$$u(x,0) = \sin(\pi x), \quad 0 \le x \le 1$$

$$u_{t}(x,0) = 0,$$
 $0 \le x \le 1$

$$u(0,t) = u(1,t) = 0, t > 0$$

Use the implicit method with using h = k = 0.25

Dr. Ashraf Al Mahalawy and the committee

Tanta University Faculty of Engineering Electrical Power and Machines Engineering Dept. Final Exam - First Samuels 2021 2022

Cour	90. EDM2104/EDM2141	Final Exam – First S	emester 2021-2022	
Year	se: EPM2104/EPM2141 : 2 nd Elec. Power / Com	munications Eng	ds)	Time allowed: 3 hr
~	f Pages: 2	munications Eng.		Date: Jan 12, 2022
		11 0.1 0.1		Total Score: 85
Kem	arks: Attempt to solve a	ill of the following que	estions	
	tion 1			24 Points
	se the correct answer for			
	fication of your choice			
(1)	Electric at a	point may be define	ed as equal to lines	of force passing normally
	through a unit cross-s	ection at that point		•
	- · ·	b) flux	(c) flux density	(d) potential
(2)	Plane $z = -10$ m carries	s charge -20 nC/m². 7	The electric field into	ensity at the origin is
	(a) $-10a_z \text{ V/m}$	(b) $-18\pi a_z \text{ V/m}$	(c) $360\pi a_z \text{ V/m}$	(d) $-360\pi a_z \text{ V/m}$
(3)	An infinite sheet has a	charge density of 15	$60~\mu\mathrm{C/m^2}$. The flux d	ensity in μ C/m ² is
(4)		b) 75	(c) 100	(d) 1/75
(4)	roint charges 30 nC,	-20 nC, and 10 nC	are located at (-1,0	(0,0), $(0,0,0)$, and $(1,5,-1)$,
	respectively. The total (a) -20 nC			
(5)	A potential field is give	(b) 20 nC	(c) 10 nC	(d) 30 nC
(0)	(a) The potential differ	rence between point (21 4) and noint (2	g is not true:
	(b) At point $(1, 0, -1)$,		2, -1, +) and point (2,	-1, -4) is zero.
	(c) The electric field a		7/m	
	(d) The potential at (0,		/III.	
(6)	Which is not an examp		rent?	
` ,	(a) Electric current flo		(b) A beam of movi	no charoes
	(c) Electronic moveme			
(7):	The relaxation time of			
()	(a) 5×10^{-10} seconds		(c) 15 hours	(d) 51.2 days
(8)				m gives a polarization of
	$P_x = 1/(6\pi) \text{ nC/m}^2$. The	he permittivity of the	material is pF	/m.
		(f) 2	(g) 17.68	(h) None of these
(9)	Electric field inside a b		,	(ii) Itone of mose
(-)	(a) increasing towards	_	_	(d) None of
(10)	• •	` ,	` /	with a given dielectric as
(1 0)	it does with air. The su	scentibility of the die	leigy twice as much lectric is	with a given dielectric as
	() O	(f) 2	(g) 1	(h) 3
(11)	The electrostatic field	< /	(8) 1	(11) 3
		(b) non-conservative	(c) solenoidal	(d) None of these
(12)	Identify the configurat	• •	• •	` ′
		(b) Configuration	(c) Configuration	(d) Configuration
			I	()
	$\begin{pmatrix} H \\ \odot \end{pmatrix}$	$A I \begin{pmatrix} H \otimes A I \end{pmatrix}$	 	}
			$\Rightarrow_{H} \otimes $) ,,
	. (1)	(2)	$\begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & & $	X.L
	(1)	(~)	(4)	

Question 2 14 Points

State true ($\sqrt{\ }$) or false (\times) and correct the false statements

- (1) Both ε_o and χ_e are dimensionless.
- (2) The electric flux density on a spherical surface r = b produced by a point charge Q located at the origin is the same as that produced by a charge of the same value as Q but distributed over the surface r=a where a<b.
- (3) Inside a conductor, the electric field intensity is changes with the position.
- (4) A conductor is an equipotential body.
- (5) The dielectric strength is the maximum magnetic field that a dielectric can tolerate or withstand without breakdown.
- (6) For a free-charged dielectric-dielectric interface, the tangential components of the electric flux density in the two materials are equal.
- (7) An isolated magnetic pole exists.

Question 3

20 Points (10+10)

- [A] A uniform surface charge density ρ_s is distributed over a cylindrical surface of radius a and extending from z = -h to z = h. Find (a) the total charge on the finite cylindrical surface. (b) the electrostatic force on a unit positive charge located in free space at (0,0,k).
- [B] Planes x = 2 and y = -3 respectively carry the same charge of $10/\pi$ nC/m². If the line x = 0, z = -2 carries charge 10 nC/m, calculate the electrostatic field intensity at the point (0,1,-1) due to the charge distributions.

Question 4

27 Points (6, 15, 6)

- [A] An infinitely long straight filament carries current of (I) lies in free space along z-axis.
 - (a) Use Biot-Savart's law to obtain the magnetic field intensity and the magnetic flux density at point (0,4 meters,0).
- (b) Determine the force, \bar{F} exerted on the filament if the area surrounding it has a magnetic flux density of $\overline{B} = \hat{a}_x - \hat{a}_y$ wb/m². (Use the following relation, $\overline{F} = \oint I \overline{dL} \times \overline{B}$)

 [B] Consider an infinite length hollow conducting tube of conductivity σ_1 S/m carrying a current
- I with a uniform current density as shown in the figure.
 - (i) Apply Ampere's law to derive expressions for the magnetic field intensity everywhere and sketch the results as a function of the radius r
 - (ii) Derive a formula for the resistance per unit length of the tube
 - (iii) The space $0 \le r \le b$ is now filled with a conducting material whose conductivity is σ_2 S/m. Current I in Ampere, flows through the area 0 < r < a with a constant current density. Derive a formula for the voltage drop across each unit length of the filled tube

[C] Write down Maxwell equations for steady magnetic field and static electrical field in both differential and integral forms. Explain the modifications required for time varying fields.

Wish you all the best Dr. Mohamed Elnemr and Dr. Sherif Dabour

RSc Program
Electronics and Electrical Communications Engineering Dept.

	EEC 2105	96 Joi 1973	r red nen)
	Course Code	Allowed time	not use pencil or red pen)
Academic Year 2021/2022	Missi-Semester Exam Total Marks: 100	No. of Pages (4)	Answer sequentially from left to right using blue pen and do not use pencil or red pen)
Communication Theory	Second Year / Pret	23-01-2022	inswer sequentially from left
Course Title	TO A DO A	Date	Repullity: (A

Answer the Following Questions

Question Number (I)

(4 Points) & u(2-t) $[2\pi\,(1000)\,t]$ a) Draw the functions: $\frac{1}{2}rect\left(\frac{t+2}{2}\right)$ & sinc

20 Points

- verse Fourier transform expressions from (4 Points) b) Prove the Fourier transform and the inv the exponential Fourier series
- (4 Points) c) Define, write the mathematical expression, and state the importance of:
- 1. Modulation theory
- 2. Convolution
- 3. Correlation
- d) If you are given that $e^{-\frac{t}{\tau}}u(t)\leftrightarrow \frac{1}{1+j\omega}$ obtain the Fourier transform of following
- e) Draw the standard rect or gate function. Then explain with drawing the graphical (4 Points) steps to estimate the convolution of two identical rect functions.

Question Number (2)

(20 Points)

(4 Points)

en draw it

function: $f(t) = e^{-i t} u(t) * cos(\omega_c t)$ th

- properties of autocorrelation function (4 Points) a) Explain with the aid of drawing the indicating its meaning and importance.
- b) Explain the following in details:

(4 Points)

- with examples a. Deterministic and random signals
- b. Impulse response of a linear time invariant system
- c. Output response and prove it
- c) Prove in details how to estimate the impulse response of an ideal linear time it and comment, then compare it without (4 Points) invariant distortion less LPF, than draw proof to the practical LPF filter.
- d) What is the relation between rice time and system bandwidth. Show without proof how to get the rice time of a simple practical RC low pass filter. Then estimate the (4 Points) bandwidth corresponding to 90% of its final value.
- and frequency domain assuming the information $f(t)=\cos 2\pi \ (1000)t$ whereas e) Define DSB.SC, write its expressions in time and frequency domain, draw it in time (4 Points) the carrier of unity amplitude and frequency 50 kHz.

Electronics and Electrical Communications Engineering Dept

Faculty of Fuginosing

a) Explain advanta	Explain one method to demodulate DSB.UC signal, indicating its advantages and drawbacks.	conditions, (4 Points)
Concer	with drawing the phase shift method to get SSB.SC. ning its synchronous detection.	Comment briefly (4 Points)
Stein steins Die gest Just	Explain the VSB amplitude modulation system indicating how to generate, its merits and its applications in TV broadcasting.	te, its merits (4 Points)
d) Defi 10 ve the r	Define the modulation efficiency and modulation index. If the carrier amplitude is 10 volts whereas the transmitted signal is sinusoidal with amplitude 5 volts, estimate the modulation efficiency and index for DSB.SC, DSB.TC, and SSB.SC. (4 Points)	amplitude is lts, estimate (4 Points)
e) Illus of m conc	Illustrate the frequency band assigned to AM audio broadcasting, indicating its type of modulation, number of channels. Then explain briefly the superheterodyne concept and its importance.	ting its type rheterodyne (4 Points)
Ouestion [Ouestion Number (4)	(20 Points)
a) Dedi Ther	Deduce an expression for a general FM signal both in time and frequency domains. Then comment about its instantaneous phase angle and frequency. (4 Points)	cy domains. (4 Points)
b) Defi	Define, analyse, draw, and comment about NBPLA as compared to AM.	(4 Points)
c) Definance	Define and show how to estimate the peak frequency deviation, modulation index, and transmission bandwidth of FM angle modulation technique.	ation index, (4 Points)
d) Anal dom	Analyse the general expression for FM assuming sinusoidal input to get the time domain expression for WBFM system.	set the time (4 Points)
e) Defin WBH to Ca	Define the Bessel function and show how to use it to estimate the bandwidth of WBFM system. Then show that bandwidth based on Bessel coefficient is equivalent to Carlson bandwidth.	ndwidth of equivalent (4 Points)
Question Number (5)		(20 Points)
a) Expl	Explain one method to generate a WBFM signal at the transmitter.	(4 Points)
b) Selec	Select the correct answer of the following:	(4 Points)
A	A symmetrical periodic square wave can be expanded by FS into a linear combination with different weights of periodic functions	ć
	a linear combination with different weights of aperiodic functions.	00
0 T	a linear combination with different weights of non-periodic functions.	0
-	a inical combination with equal weights of periodic functions. The delta function	0
	is periodic signal.	0
	is a non-periodic signal.	0
18. C	is both periodic and aperiodic signal.	0
	is neturel periodic not aperiodic signal.	0

KSc Program

Electronics and Electrical Communications Engineering Dept.

Faculty of Engineering

				Daniel Co.
त्य	to increase the power of the information signal.	*		90 J
Ch,	to increase the amplitude of the information signal.	0	2 10 1921	CONTRACTOR
()	to increase the frequency of the information signal.	0		ppo e
ರ	to increase the phase of the information signal.			- A
-i	Cross correlation is to measure the relation (or similarity)			Po o
¢3	between two functions one of them is shifted.			po j
	between two functions one of them is shifted and reflected.	c>		
0	between two functions one of them is shifted, reflected, and multiplied by 2π .	(a)	:	5
	between the function and itself after shift.	ξ <u>αν.</u>	: ; .	Aller Aller
3	Select the correct answer of the following:	(4 Points)		a is a
		,		b is a
	How to estimate the characteristics of a linear time invariant system			c is a
æ	by applying a unit step signal to the system input.	0		d is a
Þ	by applying an impulse signal to the system input.	0		Usi
ပ	by applying a signup signal to the system input.	0		a to i
p	by applying a sinusoidal signal to the system input.	0		
	In frequency domain analysis to get the output response g(t)			
ಡ	get $H(\omega)$ from $h(t)$, then multiply $G(\omega) = F(\omega) H(\omega)$, then get $g(t)$	0		
.	get $H(\omega)$ from $h(t)$, the convolution $G(\omega) = F(\omega) * H(\omega)$, then get $g(t)$	0		
ပ	get $h(t)$ from $H(\omega)$, then the convolution $g(t) = f(t) * h(t)$	0		
þ	none of the above.	0		
	The transfer function			
ď	describes the system characteristics in time domain	0		
2, د	describes the system characteristics in frequency domain	0		uou p
ာ ပ	describes the system characteristics in both time and frequency domains	0		In
י כ	none of the above	0		a is the
3	Distortion in frequency domain is due to			
ď	attenuation of the different harmonics	0		c is th
ع. د	amplification of the different harmonics	0		d is th
ه د	change in the relative weights of different harmonics			
ס כ	none of the above	0		
€	Select the correct answer of the following:	(4 Points)		
	a of the same			
	Why incumation could be used prior to transmitted			
ಡ -	to reduce the complexity of the transmitter	0 (
٥	to reduce the complexity of the receiver	o (
ပ	to allow the use of wireless communication channels	, O		
O	to allow noise reduction of the communication channel	0		
	Human Voice is a low pass signals cannot be transmitted un eculy			
ಣ ,	due to the limitation of the transmitter amplithers	0		
q	due to the limitation of the transmitter filters	0		
ပ	due to the limitation of the transmitter attenuators	0		
O	due to the limitation of the transmitter antennas	0		Prof. Mos
c	ila crom	C		Fatah, an
<i>a</i> .c	saves power to one half	· •	afamatiki pilan	
3	SAVES POWEL to the tiens	·		Course C

Electronics and Electrical Communications Engineering Dept. BSc Program

Paculty of Engineering

Ċ C Ф 0 0 0 0 0 0 0 0 0 0 the average of the cut-off frequencies of the upper and lower tuned circuits. the sum of the cut-off frequencies of the upper and lower tuned circuits. dependent on the carrier and depends on the modulating signal pends on the carrier and independent on the modulating signal sually, WBFM systems operate at very high frequencies pends on the carrier and depends on the modulating signal te side band filter used in VSB generation should have id symmetry response at the modulating signal frequency a nonlinear circuit followed by an appropriate BPF filter ne average power of an angle modulation techniques a linear circuit followed by an appropriate BPF filter the cut-off frequency of the lower tuned circuit. the cut-off frequency of the upper tuned circuit. Stagger tuneable discriminator, the carrier id symmetry response at the carrier frequency ect the correct answer of the following: ld symmetry response at its cutoff frequency es not save power but saves bandwidth d symmetry response at the origin a linear circuit followed by filter a nonlinear circuit alone tonderen falonica o get a suitable sensitivity. decrease its bandwidth. increase its bandwidth. prin our of toward ne of the above. ne of the above

End of questions

Mahmond A A Ali

Wish you success and progress

stafa Abd El Naby, Associate Prof. Mahmoud A. A. Ali, Associate Prof. Ro Ismaeel Abd El-Examination Committee nd Dr. Heba El-khopy

Coordinator: Associate Prof. Mahmoud A. A. Ali

Page 4/4

Egg 3/

Department: Electronics and Electrical Communication Eng. Total Markey of Marks

Variation in Faculty of

Course Titles Electronic Circuits (1) Date: 26/1/ 2022

<u>Allowed times 3 hours</u>

Years 2-No. of Pages: (3)

Remarks: (assume any missing data... answers should be supported by equations and electric)

Question #1

Choose the correct answers and complete the missing words for the following.

on or messing wones

- The larger the level of load resistance, the is the level of ac gain, whereas the smaller the internal re
- sistance of the signal source, the is the overall gain. that operates in the linear region at all times (Class A/ Class B/ Class AB / An amplifier Class C).
 - The transistors in a class B amplifier are biased into ы **4**. ч.
 - Crossover distortion is a problem for amplifiers.
- A BJT class-B push-pull amplifier with no transformer coupling uses (two npn transistors /
- The maximum efficiency of a class-A power amplifier is
- The maximum efficiency of a class B push-pull amplifier is
- - current gain, and voltage gain

- input power $P_i(dc)$, ac output power $P_o(ac)$, and efficiency η of the comparators. (a) Calculate: dc Question (2)

amplifier circuit shown in figure 1. If an input voltage results in a base current of

10mA peak.

(b) For the circuit shown in Figure 2. Answer the following:

Find the operating point (Leg. Verg.)

Sketch clearly the do and ac load line.

Find the maximum symmetrical swing for current and voltage. iv. Sketch waveforms for $i_{
m c}$, and $v_{
m cg}$

(Consider: $\beta = 50$)

Question (3

(a) Find V_{out} in terms of V_1 and V_2 for the circuit shown in Figure (3).

(b) For the D/A converter circuit shown in Figure (4). Determine the output voltage for input 0100. (Consider binary digit "1" corresponding to high level of 5v)

Question (4)

(a) For the circuit shown in Figure (5), determine: r_e , Z_i , Z_o , A_i , and A_v .

- (6) For the circuit shown in Figure 6, determeine the following:
 i. State the name of the circuit shown, and the purpose of it.
 ii. The function of R_2 , and Q_2 .

- (c) For the circuit shown in Figure 7, determeine the following: i. State the name of the circuit shown, and the purpose of it. ii. The overall volatge gain. iii. If $V_1 = V_2$; find V_o .
- iv. If $V_1 = -V_2$; find V_o .
- v. CMRR.
 vi. What is the practical circuit for this type of circuits?

Best Wishes of Success Or. Heba A. EL-Khobby+ Examination Committee

(a) Passive (c) Active	ectrical signal (voltage/current). (b) Primary (d) Secondary		University Course Title; E Date: 16/1/2022
Which of the following devices can measure pressure directly? (a) Bourdon (ubc (c) Both (a) and (b) (d) Notther (a)	asure pressure directly? (b) Rotometer (d) Notither (a) nor (b)		Nemarks: (Thi
Inductive transducer used for converting	Inductive transducer used for converting the linear motion into proportional output electrical		Question (1)
(a) Strain gauge (c) Hail effect sensor	(b) POT (d) LVDT	emd	In ac cir (a) only
 represents the changes in the lattice structure of the material. (a) Piezoelectric effect (b) Hall effect (c) Piezoresistive effect 	te structure of the material. (b) Hall effect (d) Thermal effect		
is an instrument designed to meas components in a complex waveform	is an instrument designed to measure relative amplitudes of single frequency	2)	The mai (a) it giv (c) it giv
(a) CRO (c) Harmonic distortion analyser	(b) Wave analyser(d) Spectrum analyser	3)	(a) Accu
The bandwidth of RF spectrum is approximately (a) 20 Hz to 20 kHz (c) 3 GHz to 3000 GHz	ximately (b) 3 kHz to 300 GHz (d) 3 Hz to 300 MHz	4	
In heterodyne wave analyser, the freque	In heterodyne wave analyser, the frequency of the mixer's output signal is the of the		(a) capar (c) induc
nequencies of the two input signals. (a) difference (c) same	(b) sum (d) multiplication	5)	The adva (a) its fir of freque
In selective wave analyser, provide (a) output amplifier (c) output meter	 provides auxiliary output for secondary devices. (b) driver amplifier (d) output buffer 		c) it can
A measures the magnitude of frequency range of the instrument	- measures the magnitude of an input signal versus frequency within the full nistrument	(9	The Whe resistanc (a) so
(a) natinonic distortion analyser (c) spectrum analyser	(b) selective wave analyser (d) Oscilloscope	7)	Two sets
In filter bank spectrum analyser, the - horizontal driver	controls the electronic switch and the CRT	`	to (a) elimir
(a) Ramp generator (c) detector	(b) Filter (d) mixer		resistance (c) elimir battery vo
In superheterodyne spectrum analyser, th (a) mixer. (c) VCO.	the detector output controls the (b) CRT horizontal plates. (d) CRT vertical plates.	8	(a) Modif (c) Maxw
Lumped parameters and distributed parameters are two types of (a) electronic delay line (b) electromagn (c) trigger circuits.	neters are two types of (b) electromagnetic delay lines. (d) sweep generators.	(6	The strair (a) resista

(d) all of the above

mion admed (a)

Department: Electronics and Electrical Communication Eng.

FINE Faculty of

•

Curre code EEClis Allowed time: 3h rse Title: Electronic Measurements (1)

No of Pages (6)

narks: (This question paper must be submitted with your answer form. Answer questions Nu.1 and No. the electronic answer form and question No.3 in the answer notehook)

uestion (1) Choose the correct answer

	\$	a a		1	3
	attent	5		1	5
	5	eing	1		
-	764	. E		(3
	police police			4/25/4	2
	Which	1 8000 1 8000 1 8000 1 8000 1 900 1 900 1 900 1 900 1 900 1 900 1 900		3	3 2
	2 00/1	5		1	2
	PILOTO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		P P P P P P P P P P P P P P P P P P P	
	1.7	5			- AT
	Sadin G	1.3			<u>د د</u>
	OžĢ.	1 1100 1 1100 0 100		10111	ea
	Provided in	20			⊏
	ause	113		1011	i ii
	Cause	Period Services Services	Ç	() 11 de () 11 de () 11 de () 11 de () 11 de	bei
	(6)		measured	magninic	'.≥
		13	80		ani
	Ξ		len-t burst	(1)	ੋਲ
	- E				
	(r-14)				
	(M)	(C)			
	13	ä		1.1	
	63	വന		<u>of the </u>	
	E	-63		4	
	5	,40 .><		4	
	5	Mine!		i the magnitude c	
	ectio	(2) (2)		(73 (23)	
		(i)*		42	
	8	400		edition:	
	(D)	Ö		CI.	
	45	6) 6) 8)		Seuc.	
	distriction of the control of the co	ä		Ĉ.	
	prof.	(<u>)</u>		0	
		anii Din		C	<u>></u>
	30	6			ΠË
	James James James P.C.D.	(Pd			dna
	kemed Negaria				

Section (

14)

15)

(91

17

18)

19)

20)

- (d) it is not affected by temperature variation ------ is a measure of the degree to which successive measurements differ from one another. (b) it does not load the medium The main advantage of the null balance technique of measurement is that (c) it gives a center zero value at its input (a) it gives a quick measurement
 - (b) dissipation factor only(d) capacitor but not dissipation factor (b) Resolution(d) Speed of response Schering bridge can be used for measurement of (a) capacitance and dissipation factor (c) inductance with inherent loss (a) Accuracy (c) Precision
- The advantage of Hay's bridge over Maxwell's inductance—capacitance bridge is that:

 (a) its final balance equations are independent

 (b) it reduces cost by not making capacitor or inductor as the variable parameters of frequency
- --- range The Wheatstone bridge is the most commonly used circuit for measurement of --(d) very high (b) medium (a) small(c) high resistances.

(d) it can be used measuring high Q inductors

(c) it can be used measuring low Q inductors

- (b) eliminate the error due to thermo-electric Two sets of readings are taken in a Kelvin's double bridge with the battery polarity reversed (d) all of the above effect (c) eliminate the error due to change in (a) eliminate the error due to contact battery voltage resistance
- ------- is used for measurements of capacitors having inherent dielectric losses.

 (a) Modified De Sauty's bridge

 (b) Hay's bridge

 (c) Maxwell's bridge The strain gauges should have low
 - (a) resistance temperature coefficient

9/1

put voltage of a potentiometer varies nonline	22)	In probe, compensation is included for o	probe, compensation is included for oscilloscope input capacitance and coaxial cabit
a) The		capacitance	
		(a) attenuator	(b) active.
CONCENTATION IN A SEMICONTUCTOR CAN BE CO		(c) normai.	(d) passive.
	£		
in terms of the contract and the receiptons of the commence of the contract of		un normal prome al mequeneles al winen une capacidive reaciance equais KS, unere is directernal cional	apacinye reaciance equals KS, incre is III un
The state of the second		managaling was alagaring. Tali alagan santa alaa	Hinde cooling (4)
		(a) artenwatiriii (c) both (a) and (b)	(b) prints smitt. (d) Neither (a) nor (b)
The input attenuator in heterodyne wave analyser can be implemented by passive or active			
aftenuator.	24)	errors change with time in an unpred	time in an unpredictable manner; however, it can be reduced by
a) True		taking certain precautions.	
		a) random.	b) environmental,
High Q-filter is the main block in heterodyne wave analyser A) True		c) gross.	d) instrumental.
	25)	Light dependent resistor is classified as	
The display of a spectrum analyser has frequency on the horizontal axis and the amplitude		a) a thermistor	b) an actuator.
ed on the vertical axis.		c) a thermocouple.	d) a sensor.
b) False			
wave analysei gives omy me reading of me ampinude of me chosen frequency component. a) True	Ouesi	Question (2) Choose True or False	
	_	Recolution is expressed as an accrisal value or as a fraction or nercentage of the full scale	as a fraction or nercentage of the full scale
cilloscope and spectrum analyser display the		resolution is expressed as an accidal value of value.	as a traction of percentage of the full scale
a) True b) False		a) True	b) False
Through CRT mechanism, electrons are emitted and controlled to form the desired signal	7	Ouality factor of a coil, dissipation factor of a capacitor can be measured using DC bridges	capacitor can be measured using DC bridges
on the fluorescent screen		a) True	b) False
a) True b) False			
The synchronization condition in CRO is that the sweep signal frequency is an integral	3)	Frequency can be measured using De Sauty's bridge	bridge
		a) True	h) False
a) True b) False			
During the sweep time, in CRO, the electron beam moves from right to left across the CRT	4	DC bridges are used to determine the conductance associated with conducting wires a) True	ince associated with conducting wires b) False
a) True b) False	5)	Bridge circuits are analogous to difference amplifiers.	plifiers.
Ordinary oscilloscopes are unsatisfactory in the cases of transient and very high frequency		a) 11uc	U) raise
	(9	A loss less inductor would have zero Q-factor at all frequencies	at all frequencies.
a) True		a) True	b) False
Bistable storage CRT has two write guns and one flood gun a) True	<u>(</u>	In LVDT the two secondary windings have different number of turns a) True	Terent number of turns b) False
		a) 11 ac	o) i disc
In DSO the stored display can be displayed indefinitely long as the power is applied to the	8	Sensor is a term collectively used for both transducers and actuators	sducers and actuators
a) True b) False		a) Irue	b) raise
	6	Friction effect is maximum in electrical transducer	ucer.
Random errors remain constant or change according to a definite law on repeated measurements of the given quantity.		a) True	b) False
a) True b) False	10)	Generally, a mechanical device acts as a pri	a mechanical device acts as a primary transducer and electrical device acts as a
		secondary transducer.	h) Tolco
			U11 a13C

Ine output voltage of a potentiometer varies
 A True

12) Carriers' concentration in a semiconductor o

#

16)

17)

18)

19)

20)

22)

21)

23)

24)

25)

क्षेत्रित द्वाराः विकेत्रा

Ouestion (3) Complete the missing words.

- (1) Figure (A) represents the block diagram of -----, Block (a) is -----, block (b) is -----, block (c) is -----, block (d) is -----, block
- (2) Bross which occur in measurements due to parasitic values, temperature effects, errors due to improper seconding and shipiding can be cummand using ------
- (3) The circuits in figures (B) and (C) represent ---- and ----
- (4) The purpose of Aquadag coating in CRT is ----- and ----
- (*) Applicators of wave analysers include 3337 ------ meguirments.
- (o) The input of the trigger direct in CPT can be --- or --- or ---
- (7) Analog storage Oscilloscope uses special types of CKT ----- and ----- storage CKTs.
- (9) In the case of an AC bridge, arm AB has a revistance in parallel with a capacitor. The values are R1 = 1.2 kB, C1 = 0.25 pF. Arm CD is a pure resistance arm with R3 = 2 kB. Determine the values of the components in arm DA (f the bridge is believed at a frequency of 50.0 Bz.
- (9) A 1 V signal with a source resistance of $K_a = 600$ Q is connected to an oscilloscope which has an input importance of $R_b = 1$ MO is parallel with $C_b = 30$ pf. The university as a capacitance of $C_b = 1$ MO is parallel with $C_b = 30$ pf. The university as a capacitance of $C_b = 1$ MO pf. Calculate the radificacine behavioral valuage (N) when the signal frequency is 100 Hz. Also dutermine the frequency at which $V_b = 3$ dD below $V_b = 1$.

Figure (A.)

9/9